3D Head Pose Estimation for TV setups
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Abstract. In this paper, we present an architecture of a system which
aims to personalize the TV content to the viewer reactions. The focus
of the paper is on a subset of this system which identifies moments of
attentive focus in a non-invasive and continuous way. The attentive fo-
cus is used to dynamically improve the user profile by detecting which
displayed media or links have drawn the user attention. Our method is
based on the detection and estimation of face pose in 3D using a con-
sumer depth camera. Two preliminary experiments were carried out to
test the method and to show its link to viewer interest. This study is
realized in the scenario of a TV with a second screen interaction (tablet,
smartphone), a behaviour that has become common for spectators.
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1 Introduction

One of the goals of future TV is to offer new possibilities for personalization of
content provided to users, including the implicit analysis of human behaviour.
To achieve the personalization goal several factors need to be taken into account:
explicit interactions (pause, play, skip, click on a link, etc.), implicit interactions
(looking to the TV or not) and context information (date, time, social networks,
number of viewers, etc.). In this paper, we focus on implicit interaction and more
specifically on a solution of head detection and pose estimation using a low-cost
depth camera. This choice was made due to the democratization of this type of
sensors and their arrival in the home through gaming platforms [17]. Moreover,
TV manufacturers begin to integrate cameras into their new systems, regarding
the sensors we can see the willingness of the makers to miniaturize sensors such
as PrimeSense new camera ” Capri” [21]. Thus, we can expect to see in the com-
ing years 3D sensors directly integrated into televisions.

The next section provides information about the related work, section 3 details
the implemented algorithm and two experiments. Section 4 relates the first re-
sults of the first experiment, while section 5 focuses on the second experiment.
Section 6 provides some cues about the analysis of the results for media person-
alization and it is followed by the conclusion section.
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2 Related work

Movement and orientation of the head are important non-verbal cues that can
convey rich information about a person’s behaviour and attention [24][12]. Until
recently, the literature has mainly focused on the automatic estimation of the
poses based on standard images or videos. One of the major issues that must
be addressed to obtain a good estimator is to be invariant to variables such as:
camera distortions, illumination, face shape and expressions or features (glasses,
beard). Many techniques have been developed over the years such as appearance
template methods, detector array methods, non linear array methods, mani-
fold regression methods, flexible methods, geometric method, tracking method
and hybrid methods. More information on these methods can be found in [18].
More recently, with the arrival of low cost depth sensor, more accurate solutions
have emerged [6][8]. Based on the use of depth maps, those methods are able to
overcome known problems on 2D images as illumination or low contrast back-
grounds. In addition, they greatly simplify the spatial positioning of the head
with a global coordinate system directly related to the metric of the analysed
scene. Many of these techniques are based on a head tracking method which
unfortunately often requires initialization and also undergoes a drift. Another
approach, based on the frame to frame analysis as the method developed by [9],
provides robust and impressive results. This method is well suited for a living
room and TV scenario. It is robust to illumination conditions that can be very
variable in this case (dim light, television only source of light, etc.) but is based
on a 3D sensor like the Microsoft Kinect. The paper proposes a entire system of
optimized head pose extraction.

3 Head pose estimation

3.1 Algorithm

The proposed system is based on the head detection and pose estimation on a
depth map. Our goal is to achieve head tracking in real time and estimate the
six degrees of freedom (6DOF) of the detected head (spatial coordinates, pitch,
yaw and roll). The advantage of a 3D system is that it uses only geometric infor-
mation on the point cloud and is independent of the illumination issues which
can dramatically change in front of a device like a TV. The proposed system
can even operate in the dark or in rapidly varying light conditions, which is not
possible with face tracking systems working on RGB images. In addition, the
use of 3D data provide more stable results than 2D data which can be mislead
by projections of the 3D world on 2D images.

Figure 1 shows the global pipeline of the head pose estimation sub-system. First,
the 3D point cloud is extracted from a Kinect sensor using the PCL library [20].
In a second step people face is detected and localized (the blue larger boxes in
Figure 1). Those boxes are computed from the head of the skeleton extracted
from the depth maps by using the OpenNT library [19]. The skeleton head pro-
vides the 3D coordinates of the area where a face might be located. The smaller
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Fig. 1. Algorithm pipeline: 3D cloud extraction from the RGBD sensor, face localiza-
tion and detection, 3D cloud segmentation and pose estimation.

red boxes are 2D face detection which can be used for face analysis, but this
issue is not in the focus of this paper. Once the 3D position of the head is ex-
tracted, the 3D cloud is segmented to optimize the last 3D head pose estimation
step. The segmentation eliminates a lot of the points of the 3D clouds where
the chances to find a face are very low and therefore boosts the computational
efficiency of the method.

The 3D head pose estimation used here follows the development in [16] which is
improved by 4 in terms of computation time due to the 3D point cloud segmen-
tation. The 3D pose estimation algorithm is based on the approach in [7][10] and
implemented in the PCL library [2]. This solution relies on the use of a random
forest [3] extended by a regression step. This allows us to detect faces and their
orientations on the depth map. The method consists of a training stage dur-
ing which we build the random forest and an on-line detection stage where the
patches extracted from the current frame are classified using the trained forest.
The training process is done only once and it is not user-dependent. One initial
training is enough to handle multiple users without any additional configuration
or re-training. This is convenient in a setup where a wide variety of people can
watch TV. The training stage is based on the BIWI dataset [10] containing over
15000 images of 20 people (6 females and 14 males). This dataset covers a large
set of head poses (+75 degrees yaw and +60 degrees pitch) and generalizes the
detection step.
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During the test step, a leaf of the trees composing the forest stores the ratio
of face patches that arrived to it during training as well as two multi-variate
Gaussian distributions voting for the location and orientation of the head. This
step of the algorithm provides the head position and a rough head orientation
on any new individual without the need of re-training. We then apply a final
processing step which consists in registering a generic face cloud over the re-
gion corresponding to the estimated position of the head. This last step greatly
stabilizes the final head position result.

3.2 Experiment
Our experimental setting consists of:

— a 46 inch HD TV,

— a sofa, located at 2.5m from the TV,

— a 3D camera positioned at 80 cm from the sofa and low enough to not
obstruct the field of vision of the viewer,

— a 10 inches tablet that plays the role of a second screen.

These parameters allow us to calibrate our tracking system and reconstruct a
simplified virtual 3D scene (Figure 4). The Kinect is located between the viewer
and the TV which is not very convenient and it can be subject to viewer face
occlusion when using second screen devices. Therefore the final setup will use the
second generation Kinect which has a better resolution and should be capable
to capture head motion when ideally located on top of the TV.

Within this setup, we performed two scenarios. The first one consists in detecting
the head direction of a person watching TV in his living room. The idea is to
discriminate between 1) watching TV, 2) watching the second screen (tablet,
smartphone), 3) watching outside the TV, 4) watching out of the TV setup
(no face detection but viewer detection). We asked participants to solve various
puzzles on a tablet with increasing difficulty to keep them focused on the second
screen like on the Fig. 2. The broadcast media is a zapping, a series of short clips
of news, sports, politics, buzz, etc. In addition to this test, we also performed
a second scenario. We used a commercial eye-tracking (Facelab 5 [23]) system
which is able to measure both head direction and eye gaze direction. The eye-
tracker was located at 1.80m from the TV screen and the viewer at 2.30m from
the same TV as in experiment 1. The purpose of this second test was both to
asses the 3D camera-based head detection, and also to have a first idea about
the relationship between the head direction and eye direction.

4 Results of the first scenario: head from 3D camera

Each frame can be processed up to 8 frames/sec on a Macbook Pro with an
Intel Core i5 2.53GHz. This speed is enough to extract head direction and basic
features like direction change and speed. In addition, the algorithm proposed
here also works on a recorded 3D video (.oni format). In this case the processing
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Fig. 2. Setup of the experiment with the user playing a puzzle game on the second
screen (tablet) while a TV show is displayed on the main screen. The camera in the
middle of the scene tracks head movements.

Camera A Cam

Head
direction

Fig. 3. Second experiment: Facelab interface showing head direction as a red vector
between the eyes and eye gaze as two green vector located on the eyes.

speed can be the same as the framerate (30 fps). Within the TV viewer profile
personalization application, the use of pre-recorded video is possible as the head
pose data is only sent when the context changes (viewers enter/leave, etc.) as
explained in section 6.

To detect if a user watches TV or not, we reconstruct a virtual simplified model
of the real scene (Figure 4). Therefore, knowing the 6DOF position of the face
of the person detected, the camera position and the TV position it is possible
to estimate the point of intersection between the TV and the orientation of the
head. In this way, we can synchronize annotated media with the head tracker
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Fig. 4. 3D rendering of our system. On left: 3D point cloud from depth camera and
head direction vector. On right: 3D model of the TV and intersection point between
TV and viewer head position.

and estimate (£10 cm, on our 46” TV) where the user is looking.
Depending on the camera position, user head direction can be detected towards

Fig. 5. Top-images: switch between main screen (left) and second screen (right).
Bottom-image: Multiple head detection and orientation estimation.

the main screen or the second screen (tablet) as in Figure 5, top images. To be
able to achieve this measure, the 3D camera must see the viewer face 1) with no
occlusions due to the second screen, 2) with a pitch angle which is small enough
for the algorithm (+60 degrees pitch).

Moreover, the algorithm can detect several users (as many as possibly detected
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in the camera field of view) and compute all users head directions as in Figure
5, bottom image. This feature allows us to check potential joint attention on the
main TV screen.

5 Results of the second scenario: attention from head

The easier way to measure people overt [25] attention is to measure eye gaze or
direction. Given the technical limitations of camera distance, it is not possible to
access the viewer’s eyes orientation. We than hypothesise that, at the TV setup
distance (more than two meters from the main screen), the gaze of a person is
considered to be close to the direction of his head. As stated in [18], ”[...|Head
pose estimation is intrinsically linked with visual gaze estimation ... By itself,
head pose provides a coarse indication of gaze that can be estimated in situations
when the eyes of a person are not visible[...]”. Several studies rely and validate
this hypothesis as shown in [1].

In the second experiment we firstly qualitatively compared the Facelab head
direction detection with the proposed algorithm. The results are similar, and the
proposed approach seems even to be more reactive to head movements, while the
one of Facelab needs large head movements. However, a quantitative comparison
is not simple due to the framerate difference between the two systems.

In a second step we compared the head direction with the eye gaze using again
the Facelab system (Figure 6). The first results we obtained are consistent with
the literature and show that there is a correlation between eye gaze and head
direction. This correlation is higher when the gaze goes far from the image centre
and for more dynamical content (fast moving videos). The head direction does
not exactly follow the eye gaze which is much faster to attend events occurring
on the TV screen, but the head direction accompany the gaze in a smoother
way. The head and eye movements work together to both minimize their motion
(effort) and maximizing the acquisition of interesting information in the scene.
In this optimisation process, the head mechanics naturally act like a smoother
while eye reactions can be much faster.

Fig. 6. Green circle: eye gaze, Red square: head direction. Left image: both are very
close, Right image: the eye quickly shifted to the top-right corner and the head position
followed in the same direction.
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6 From attention to content personalization

Based on our preliminary studies, we can say that head direction might be a
rough approximation of eye gaze, thus of overt attention. Attention is a phe-
nomenon based on two competing precesses: the top-down and bottom-up at-
tention [22]. Bottom-up attention is a generic approach also known as stimulus-
driven or exogenous attention. Furthermore, it relies on the information inno-
vation that the features extracted from the image can bring in a given spatial
context. The top-down component of attention, which is also known as task-
driven or endogenous attention, integrates specific knowledge that the viewer
could have in specific situations (tasks, models of the kind of scene, recognized
objects, etc.).

While bottom-up attention will be engaged each time that surprising images/motion
or sounds arise, top-down attention shows that the viewer is specifically inter-
ested to the content displayed. Thus, for content personalization, the most im-
portant is to extract the viewer interest in terms of top-down attention.

To detect the top-down attention of the viewer, several features can be extracted.

— The classical case is that the user’s attention is drawn from the second
screen and stays focused on the main screen for a long time. This is a sign
of sustained attention which shows that cognitive processes are engaged and
it is not only a bottom-up attention due to surprising events [13]. A first
feature is thus the time spent looking at the screen after a head position
change.

— [15][4][5] show that it is possible, by classifying head trajectories based on
their speed and amplitude, to distinguish attention switch due to bottom-up
stimuli and those due to top-down information. The speed of the head direc-
tion change and the total angle of the head motion are additional features
of the kind of attention which the viewer uses.

— In case of several users, joint attention (see Figure 5, bottom image) which
is stable during enough time shows a discussion or a common subject of
interest. Joint attention is an additional cue for top-down attention.

Based on the detection of focus on the main screen and the nature of the
attention attracted by the media (sustained, bottom-up), it is possible to provide,
for each media segment a weight of interest that the user implicitly expressed.
This weight, mixed along with other contextual cues (time and date, number
of viewers, the presence of children or not, etc.) and the explicit actions of
the viewer (skip, play, stop, explore links, etc.) provides a good idea about the
subsets of the media which are interesting for the viewer. This information let
an ontology-based system propose to the viewer media which are close to the
viewer interests depending on the context (viewing alone during the WE will
most of the time be different from viewing in family during week days).

The data collected through the system is sent to a content personalization
framework. At each change in context (new viewers entering, viewers leaving,
kids, coming or leaving, etc.) the logs of the head focus for the viewers is sent (1:
focus on the main screen, 2: focus on the second screen, 3: focus out of screens,
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4: no head detected (the viewer is talking to another one or looking back ...)).
In addition to the head focus, for the first two modes, the kind of attention
(bottom-up or top-down) is also sent. These logs will be used to modify the
viewer profile in the given context. Some feature combinations will provide cues
about a positive interest of the viewer (look to the main screen - mode 1 and
top-down attention, look to second screen - 2 and top-down attention), others
about a negative interest (look to the walls - mode 3) and others will provide
a neutral result (not enough to know about the viewer interest, keep previous
score like mode 4 or modes 1 and 2 with bottom-up attention).

To summarize, the system described in this paper, at the end of each user session
(context change: when a user leaves the interaction zone, when a second user
comes in), the logs containing the tracking data will be sent as REST [11] query
to the remote personalization module called GAIN (General Analytics INtercep-
tor) [14] which will use rule-based learning algorithms to change viewer profile
accordingly.

7 Conclusions

In this paper, we presented a system architecture and two preliminary exper-
iments on an implicit behaviour analysis system based on a 3D head tracker.
This tool is optimized compared to previous publications and it is designed to
feed a personalization framework capable of processing behavioural data to dy-
namically enhance a user profile. The preliminary results show that it is possible
to extract implicit information and that head direction can provide cues about
viewer interest which can be used in future TV personalization. In the future,
1) more extensive tests will be conducted to confirm the preliminary findings of
our two experiments and 2) additional information will be provided concerning
the kind of attention (bottom-up or top-down) which is crucial information to
asses real viewer interest.
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